A Dimension–reducing Conic Method for Unconstrained Optimization

نویسندگان

  • G. E. MANOUSSAKIS
  • T. N. GRAPSA
  • C. A. BOTSARIS
چکیده

In this paper we present a new algorithm for finding the unconstrained minimum of a twice–continuously differentiable function f(x) in n variables. This algorithm is based on a conic model function, which does not involve the conjugacy matrix or the Hessian of the model function. The basic idea in this paper is to accelerate the convergence of the conic method choosing more appropriate points x1, x2, . . . , xn+1 to apply the conic model. To do this, we apply in the gradient of f a dimension–reducing method (DR), which uses reduction to proper simpler one–dimensional nonlinear equations, converges quadratically and incorporates the advantages of Newton and Nonlinear SOR algorithms. The new method has been implemented and tested in well known test functions. It converges in n + 1 iterations on conic functions and, as numerical results indicate, rapidly minimizes general functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روش ناحیه اعتماد مخروطی برای مینیمم‌سازی تابع پیوسته ‌لیپ‌شیتز موضعی

In this paper, we present a trust region method for unconstrained optimization problems with locally Lipschitz functions. For this idea, at first, a smoothing conic model sub-problem is introduced for the objective function, by the approximation of steepest descent method. Next, for solving the conic sub-problem, we presented the modified convenient curvilinear search method and equipped it wit...

متن کامل

A nonmonotone trust-region method of conic model for unconstrained optimization

In this paper, we present a nonmonotone trust-region method of conic model for unconstrained optimization. The new method combines a new trust-region subproblem of conic model proposed in [Y. Ji, S.J. Qu, Y.J. Wang, H.M. Li, A conic trust-region method for optimization with nonlinear equality and inequality 4 constrains via active-set strategy, Appl. Math. Comput. 183 (2006) 217–231] with a non...

متن کامل

A nonmonotone adaptive trust region method for unconstrained optimization based on conic model

In this paper, we present a nonmonotone adaptive trust region method for unconstrained optimization based on conic model. The new method combines nonmonotone technique and a new way to determine trust region radius at each iteration. The local and global convergence properties are proved under reasonable assumptions. Numerical experiments show that our algorithm is effective.

متن کامل

Unconstrained Convex Minimization in Relative Scale

In this paper we present a new approach to constructing schemes for unconstrained convex minimization, which compute approximate solutions with a certain relative accuracy. This approach is based on a special conic model of the unconstrained minimization problem. Using a structural model of the objective function we can employ the efficient smoothing technique. The fastest of our algorithms sol...

متن کامل

Dual Greedy Algorithm for Conic Optimization Problem

In the paper we propose an algorithm for nding approximate sparse solutions of convex optimization problem with conic constraints and examine convergence properties of the algorithm with application to the index tracking problem and unconstrained l1-penalized regression.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003